Processing math: 100%

SI UNITS - EXAMPLES II

11. Determine how much water can be in cuboid with dimensions of 2 m x 1 m x 0.5 m? If the water density is equal to 1 g/cm3 determine how much kilograms of water can be inside the cuboid?
a=2 mb=1 mc=0.5 mρ=1g/cm3_V=?m=?ρ=1[gcm3]1 [kg]1000 [g]1000000 [cm3]1=1000 kg/m3V=abc=210.5=1 m3m=ρV=10001=1000kg

12. How much seconds has one day?
n=1 day=24 h_n=?s1 h=60 minn=24[h]60 [min]1 [h]=1440 min1 min=60 sn=1440 [min]60 [s]1 [min]=86400 s

13. What is the height of an equilateral triangle with side length of 10 cm?
a=10 cm=0.1 m_h=?h=32a=320.1=0.0866025 m

14.The height of an equilateral triangle is 5 cm. Determine the side length?
h=5 cm=0.05 m_a=?h=32aa=2h3=20.053=0.0577 m

15. Rectangular triangle with cathetus of length 3 cm and 4 cm. What is the length of the hypotenuse?
a=3 cm=0.03 mb=4 cm=0.04 m_c=?c=a2+b2=0.032+0.042=0.05 m
16.Dependence of position of the body which is moving along x axis on time t is shown in the next figure.


Determine:
a.       Where was the body at the moment: t1 = 1 s, t2 = 3 s, t3 = 5 s, t5 = 8 s
b.      In which time interval is the body at rest?

c.       In what intervals the body has positive shift and in what has a negative shift?
t1=1 st2=3 st3=5 st4=8 s_a)s1=40 ms2=80 ms3=80 ms4=20 mb)t[2,6]c) Positive shift in time interval t[0,2]Negative shift in time interval t[6,10]


 

No comments:

Post a Comment