SI units - Examples I

1. Provide basic physical quantities and their corresponding units that make up the International System of Units (SI system – System international) 
Basic SI units are shown in Table 1
Quantity
Unit
Symbol
Definition
Length 
meter 
m 
1983, 17th CGPM:  The path travelled by light in vacuum during a time interval of 1/299792458 seconds. This fixes the speed of light to exactly 299792458 m/s.
Mass 
kilogram 
kg 
1901, 3rd CGPM:  Mass of the platinum-iridium prototype at BIPM in Sevres.
Time 
second 
s 
1968, 13th CGPM:  One second equals 9192631770 periods of the radiation due to the transition between the two hyperfine levels of the ground state of Cesium 133.
Electric current 
ampere 
A 
1948, 9th CGPM:  Given two parallel, rectilinear conductors of negligible circular cross-section positioned 1 m apart in vacuum, one ampere is the electric current which, passing through both of them, makes them attract each other by the force of 2.10-7 newtons per every meter of length. This fixes the permeability of vacuum to exactly 2π*10-7 H/m.
Temperature 
kelvin 
K 
1968, 13th CGPM:  One degree K equals 1/273.16 of the thermodynamic temperature of the triple point of water.
Quantity of substance 
mole 
mol 
1971, 14th CGPM:  The amount of a substance composed of as many specified elementary units (molecules, atoms) as there are atoms in 0.012 kg of Carbon 12.
Luminosity 
candle 
cd 
1979, 16th CGPM:  The candle (or candela) is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540.1012 hertz and that has a radiant intensity in that direction of 1/683 W/sr.

            Derived SI units
           
Quantity
Unit
Symbol
Equals
Definition / Note
Space and time:
Plane angle 
radian 
rad 

The plane angle which,  when centered in a circle, cuts off an arc whose length is equal to the circle radius.
Solid angle 
steradian 
sr 

The solid angle which,  when centered in a sphere, cuts off a cap whose surface equals that of a square having the radius as side.
Frequency 
hertz 
Hz 
1 s-1
[number of events or cycles]/[time]. 
Mechanics:
Force 
newton 
N 
1 kg.m.s-2
[mass].[acceleration]. 
Pressure 
pascal 
Pa 
1 N.m-2
[force]/[area]. Also: stress. 
Energy 
joule 
J 
1 N.m 
[force].[length]. Also: Work, Heat 
Power 
watt 
W 
1 J.s-1
[energy]/[time]. Also: Radiant flux 
Thermodynamics:
Temperature 
celsius 
oC 
1 K 
T [oC] = T [K] -273.15 (the offset is exact!). 
Electromagnetism:
Charge 
coulomb 
C 
1 A.s 
[current].[time]. 
Potential 
volt 
V 
1 W.A-1
[power]/[current]. Only differences are measurable! 
Resistance 
ohm 
Ω 
1 V.A-1
[Δpotential]/[current]. 
Conductance 
siemens 
S 
1 A.V-1
[current]/[Δpotential]. 
Capacitance 
farad 
F 
1 C.V-1
[charge]/[Δpotential]. 
Inductance 
henry 
H 
1 V.s.A-1
[Δpotential]/[rate of change of current]. 
Magnetic flux 
weber 
Wb 
1 J.A-1
[energy]/[current]. 
Magnetic flux density 
tesla 
T 
1 Wb.m-2
[magnetic flux]/[area]. Also magnetic induction. 
Optics:
Luminous flux 
lumen 
lm 
1 cd.sr 
[luminosity].[solid angle]. 
Illuminance 
lux 
lx 
1 lm.m-2
[luminous flux]/[area]. 
Convergence 
dioptry 
dioptry 
1 m-1
Inverse of focal length. 
Radioactivity and radiation:
Activity 
becquerel 
Bq 
1 s-1
[number of decay events]/[time]. 
Absorbed dose 
gray 
Gy 
1 J.kg-1
[energy]/[mass]. 
Dose equivalent 
sievert 
Sv 
1 J.kg-1
[energy]/[mass]. Absorbed dose re-normalized by biological effects. 
Chemistry:
Katalytic activity 
katal 
kat 
1 mol.s-1
[quantity of substance]/[time]. 
2. Determine the distance of object shown in next figure in the room from the origin of coordinate system.
$$\begin{align} & x=4\text{ m} \\ & \underline{y=3\text{ m}} \\ & r=\sqrt{{{x}^{2}}+{{y}^{2}}}=\sqrt{{{4}^{2}}+{{3}^{2}}}=\sqrt{16+9}=\sqrt{25}=5\text{ m} \\ \end{align}$$
3. Body is traveling along the x axis. The movement of the body is defined as: Δx=x2-x1 where x1 is starting position and x2 is ending position Determine: 
a)Distance that body traveled if the coordinates of body positions are: x1 = 4 m and x2 = 10m? 
$$\begin{align} & {{x}_{1}}=4\text{ m} \\ & \underline{{{x}_{2}}=10\text{ m}} \\ & \Delta x={{x}_{2}}-{{x}_{1}}=10-4=6\text{ m} \\ \end{align}$$

b) Distance that body traveled if the coordinates of body starting and ending positions are: x1 = 5 m and x2 = 12m?
$$\begin{align} & {{x}_{1}}=5\text{ m} \\ & \underline{{{x}_{2}}=12\text{ m}} \\ & \Delta x={{x}_{2}}-{{x}_{1}}=12-5=7\text{ m} \\ \end{align}$$

c) Distance that body traveled if the coordinates of body starting and ending positions are: x1 = -5 m and x2 = 9m?
$$\begin{align} & {{x}_{1}}=-5\text{ m} \\ & \underline{{{x}_{2}}=9\text{ m}} \\ & \Delta x={{x}_{2}}-{{x}_{1}}=9+5=14\text{ m} \\ \end{align}$$

d) Distance that body traveled if the coordinates of body starting and ending positions are: x1 = -10 m and x2 = 9m?
$$\begin{align} & {{x}_{1}}=-10\text{ m} \\ & \underline{{{x}_{2}}=9\text{ m}} \\ & \Delta x={{x}_{2}}-{{x}_{1}}=9+10=19\text{ m} \\ \end{align}$$


4. Car is moving on a circle with radius r as shown in the following figure.


a) When car is moving from position A to position B determine the shift?
$$x=\sqrt{{{r}^{2}}+{{r}^{2}}}=r\sqrt{2}$$

b) Car is moving from position A to position B so determine the traveled path?
$$\begin{align} & \underline{r,\varphi =\frac{3}{2}\pi } \\ & s=? \\ & s=\frac{3}{2}\pi r \\ \end{align}$$


5. The pressure is pressing down the material with pressure equal to 10MPa. Express the value in scientific notation.
$$p=10\text{ MPa}=10\cdot {{10}^{6}}\text{ Pa}$$
6. The distance traveled is 5·105 mm. How much is that in m, dm and cm?
$$\begin{align} & \underline{s=5\cdot {{10}^{5}}\text{ mm}} \\ & s=5\cdot {{10}^{5}}\text{ }\left[ \text{mm} \right]\frac{\text{1 }\left[ \text{m} \right]}{1000\text{ }\left[ \text{mm} \right]}=5\cdot {{10}^{2}}\text{ m} \\ & s=5\cdot {{10}^{5}}\text{ }\left[ \text{mm} \right]\frac{\text{1 }\left[ \text{dm} \right]}{100\text{ }\left[ \text{mm} \right]}=5\cdot {{10}^{3}}\text{ dm} \\ & s=5\cdot {{10}^{5}}\text{ }\left[ \text{mm} \right]\frac{\text{1 }\left[ \text{cm} \right]}{10\text{ }\left[ \text{mm} \right]}=5\cdot {{10}^{4}}\text{ cm} \\ \end{align}$$

7. Volume of some object is 500 cm3. How much is that in m3, dm3 and cm3?
$$\begin{align} & \underline{s=500\text{ c}{{\text{m}}^{3}}} \\ & 1\text{ }{{\text{m}}^{\text{3}}}=100000\text{ c}{{\text{m}}^{3}} \\ & s=500\text{ }\left[ \text{c}{{\text{m}}^{3}} \right]\frac{\text{1 }\left[ {{\text{m}}^{3}} \right]}{{{10}^{5}}\text{ }\left[ \text{c}{{\text{m}}^{3}} \right]}=500\cdot {{10}^{-5}}\text{ }{{\text{m}}^{3}}=5\cdot {{10}^{-3}}\text{ }{{\text{m}}^{3}} \\ & 1\text{ d}{{\text{m}}^{\text{3}}}=1000\text{ c}{{\text{m}}^{3}} \\ & s=500\text{ }\left[ \text{c}{{\text{m}}^{3}} \right]\frac{\text{1 }\left[ \text{d}{{\text{m}}^{3}} \right]}{1000\text{ }\left[ \text{c}{{\text{m}}^{3}} \right]}=0.5\text{ d}{{\text{m}}^{3}} \\ & 1\text{ c}{{\text{m}}^{3}}=1000\text{ m}{{\text{m}}^{3}} \\ & s=500\text{ }\left[ \text{c}{{\text{m}}^{3}} \right]\frac{\text{1000 }\left[ \text{m}{{\text{m}}^{3}} \right]}{1\text{ }\left[ \text{c}{{\text{m}}^{3}} \right]}=5\cdot {{10}^{5}}\text{ m}{{\text{m}}^{3}} \\ \end{align}$$


8. The speed of light is approximately 3·108 m/s. How much is that in km/h and cm/min?
    $$\begin{align} & \underline{v=3\cdot {{10}^{8}}\text{ m/s}} \\ & v=3\cdot {{10}^{8}}\text{ }\left[ \frac{\text{m}}{s} \right]\frac{1\text{ }\left[ \text{km} \right]}{1000\text{ }\left[ \text{m} \right]}\frac{3600\text{ }\left[ \text{s} \right]}{1\text{ }\left[ \text{h} \right]}=1.08\cdot {{10}^{9}}\text{ km/h} \\ & v=3\cdot {{10}^{8}}\text{ }\left[ \frac{\text{m}}{s} \right]\frac{100\text{ }\left[ \text{cm} \right]}{1\text{ }\left[ \text{m} \right]}\frac{\text{60 }\left[ s \right]}{1\left[ \min \right]}=1.8\cdot {{10}^{12}}\text{cm/min} \\ \end{align}$$
    9. One liter of volume is equal to 1 dm3.How much is that in m3?
$$\begin{align} & \underline{V=1\text{ L}=1\text{ d}{{\text{m}}^{3}}} \\ & V=1\text{ }\left[ \text{d}{{\text{m}}^{3}} \right]\frac{1\text{ }\left[ {{\text{m}}^{3}} \right]}{1000\text{ }\left[ \text{d}{{\text{m}}^{3}} \right]}=0.001\text{ }{{\text{m}}^{3}} \\ \end{align}$$

    10. Length of cuboid sides are 5 cm x 3 cm x 6 cm. 
a) Determine the volume of cuboid and express it in m3 cm3 and mm3
b) Calculate the area of each cuboids side and express it in m3 cm3 and mm
c)What is cuboids volume in liters? 
d) Determine the density of cuboid’s material if a mass of cuboid is equal to 1 kg.
$$\begin{align} & a=5\text{ cm }=\text{ 0}\text{.05 m} \\ & b=3\text{ cm }=\text{ 0}\text{.03 m} \\ & \underline{c=6\text{ cm }=\text{ 0}\text{.06 m}} \\ & a)V=?\text{ }{{\text{m}}^{3}},\text{ c}{{\text{m}}^{\text{3}}}\text{ }\text{, m}{{\text{m}}^{3}} \\ & V=abc=0.05\cdot 0.03\cdot 0.06=9\cdot {{10}^{-5}}{{\text{m}}^{3}} \\ & 1\text{ }{{\text{m}}^{3}}=1\cdot {{10}^{6}}\text{c}{{\text{m}}^{\text{3}}} \\ & V=9\cdot {{10}^{-5}}\cdot 1\cdot {{10}^{6}}=90\text{ c}{{\text{m}}^{\text{3}}} \\ & 1\text{ }{{\text{m}}^{3}}=1\cdot {{10}^{9}}\text{ m}{{\text{m}}^{3}} \\ & V=9\cdot {{10}^{-5}}\cdot 1\cdot {{10}^{9}}=90000\text{ m}{{\text{m}}^{\text{3}}} \\ & b)\text{ Number of cuboid sides is }n=\text{ }6 \\ & \text{Two sides of cuboid are the same and that means that there are three differnet sides} \\ & I)\text{ }a=5\text{ cm }=\text{ 0}\text{.05 m} \\ & b=3\text{ cm }=\text{ 0}\text{.03 m} \\ & {{P}_{1}}=ab=5\cdot 3=15\text{ c}{{\text{m}}^{2}}=15\text{ }\left[ \text{c}{{\text{m}}^{2}} \right]\frac{1\text{ }\left[ {{\text{m}}^{2}} \right]}{1000\text{ }\left[ \text{c}{{\text{m}}^{2}} \right]}=0.015\text{ }{{\text{m}}^{2}}=0.015\text{ }\left[ {{\text{m}}^{2}} \right]\frac{1\cdot {{10}^{6}}\left[ \text{m}{{\text{m}}^{2}} \right]}{1\text{ }\left[ {{\text{m}}^{\text{2}}} \right]}=15000\text{ m}{{\text{m}}^{2}} \\ & {{P}_{2}}=ac=5\cdot 6=30\text{ c}{{\text{m}}^{2}}=30\text{ }\left[ \text{c}{{\text{m}}^{2}} \right]\frac{1\text{ }\left[ {{\text{m}}^{2}} \right]}{1000\text{ }\left[ \text{c}{{\text{m}}^{2}} \right]}=0.03\text{ }{{\text{m}}^{2}}=0.03\text{ }\left[ {{\text{m}}^{2}} \right]\frac{1\cdot {{10}^{6}}\left[ \text{m}{{\text{m}}^{2}} \right]}{1\text{ }\left[ {{\text{m}}^{\text{2}}} \right]}=30000\text{ m}{{\text{m}}^{2}} \\ & {{P}_{3}}=bc=3\cdot 6=18\text{ c}{{\text{m}}^{2}}=18\text{ }\left[ \text{c}{{\text{m}}^{2}} \right]\frac{1\text{ }\left[ {{\text{m}}^{2}} \right]}{1000\text{ }\left[ \text{c}{{\text{m}}^{2}} \right]}=0.018\text{ }{{\text{m}}^{2}}=0.018\text{ }\left[ {{\text{m}}^{2}} \right]\frac{1\cdot {{10}^{6}}\left[ \text{m}{{\text{m}}^{2}} \right]}{1\text{ }\left[ {{\text{m}}^{\text{2}}} \right]}=18000\text{ m}{{\text{m}}^{2}} \\ & c)V=?\text{ L} \\ & V=90\text{ c}{{\text{m}}^{\text{3}}}=90\text{ }\left[ c{{m}^{3}} \right]\cdot \frac{1\text{ }\left[ \text{d}{{\text{m}}^{3}} \right]}{1000\left[ c{{m}^{3}} \right]}=0.09\text{ d}{{\text{m}}^{3}}=0.09L \\ & d)m=1kg \\ & V=9\cdot {{10}^{-5}}{{\text{m}}^{3}} \\ & \rho =\frac{m}{V}=\frac{1}{9\cdot {{10}^{-5}}}=11111.1\text{ kg/}{{\text{m}}^{3}} \\ \end{align}$$


























No comments:

Post a Comment